Anthropogenic climate change ranks among the major global-scale threats to modern biodiversity. Extinction risks are known to increase via the interactions between rapid climatic alterations and environmentally-sensitive species traits that fail to adapt to those changes. Accumulating evidence reveals the influence of ecophysiological, ecological and phenological factors as drivers underlying demographic collapses that lead to population extinctions. However, the extent to which life-history traits influence population responses to climate change remains largely unexplored. The emerging ‘cul-de-sac hypothesis’ predicts that reptilian viviparity (‘live-bearing’ reproduction), a ‘key innovation’ facilitating historical invasions of cold climates, increases extinction risks under progressively warming climates compared to oviparous reproduction – as warming advances polewards/mountainwards, historically cold-climates shrink, leading viviparous species to face demographic collapses. Leer más.
Alternative reproductive adaptations predict asymmetric responses to climate change in lizards
Facebook
Twitter
LinkedIn